218 research outputs found

    Maximum Entropy Estimation of the Galactic Bulge Morphology via the VVV Red Clump

    Get PDF
    The abundance and narrow magnitude dispersion of Red Clump (RC) stars make them a popular candidate for mapping the morphology of the bulge region of the Milky Way. Using an estimate of the RC's intrinsic luminosity function, we extracted the three-dimensional density distribution of the RC from deep photometric catalogues of the VISTA Variables in the Via Lactea (VVV) survey. We used maximum entropy based deconvolution to extract the spatial distribution of the bulge from Ks-band star counts. We obtained our extrapolated non-parametric model of the bulge over the inner 40 by 40 degrees squared region of the Galactic centre. Our reconstruction also naturally matches onto a parametric fit to the bulge outside the VVV region and inpaints overcrowded and high extinction regions. We found a range of bulge properties consistent with other recent investigations based on the VVV data. In particular, we estimated the bulge mass to be in the range 13 to 17 billion solar masses, the X-component to be between 18% and 25% of the bulge mass, and the bulge angle with respect to the Sun-Galactic centre line to be between 18 and 32 degrees. Studies of the Fermi Large Area Telescope (LAT) gamma-ray Galactic centre excess suggests that the excess may be traced by Galactic bulge distributed sources. We applied our deconvolved density in a template fitting analysis of this Fermi-LAT GeV excess and found an improvement in the fit compared to previous parametric based templates.Comment: 25 pages, 27 figures, minor typo correcte

    Inverse Compton emission from millisecond pulsars in the Galactic bulge

    Get PDF
    Analyses of Fermi Gamma-Ray Space Telescope data have revealed a source of excess diffuse gamma rays towards the Galactic center that extends up to roughly ±\pm20 degrees in latitude. The leading theory postulates that this GeV excess is the aggregate emission from a large number of faint millisecond pulsars (MSPs). The electrons and positrons (e±e^\pm) injected by this population could produce detectable inverse-Compton (IC) emissions by up-scattering ambient photons to gamma-ray energies. In this work, we calculate such IC emissions using GALPROP. A triaxial three-dimensional model of the bulge stars obtained from a fit to infrared data is used as a tracer of the putative MSP population. This model is compared against one in which the MSPs are spatially distributed as a Navarro-Frenk-White squared profile. We show that the resulting spectra for both models are indistinguishable, but that their spatial morphologies have salient recognizable features. The IC component above ∼\simTeV energies carries information on the spatial morphology of the injected e±e^\pm. Such differences could potentially be used by future high-energy gamma-ray detectors such as the Cherenkov Telescope Array to provide a viable multiwavelength handle for the MSP origin of the GeV excess.Comment: 13 pages, 8 figures, 3 tables. Match the version published in PR

    Strong Evidence that the Galactic Bulge is Shining in Gamma Rays

    Get PDF
    There is growing evidence that the Galactic Center Excess identified in the Fermi\textit{Fermi}-LAT gamma-ray data arises from a population of faint astrophysical sources. We provide compelling supporting evidence by showing that the morphology of the excess traces the stellar over-density of the Galactic bulge. By adopting a template of the bulge stars obtained from a triaxial 3D fit to the diffuse near-infrared emission, we show that it is detected at high significance. The significance deteriorates when either the position or the orientation of the template is artificially shifted, supporting the correlation of the gamma-ray data with the Galactic bulge. In deriving these results, we have used more sophisticated templates at low-latitudes for the Fermi\textit{Fermi} bubbles compared to previous work and the three-dimensional Inverse Compton (IC) maps recently released by the GALPROP{\tt GALPROP} team. Our results provide strong constraints on Millisecond Pulsar (MSP) formation scenarios proposed to explain the excess. We find that an admixture formation\textit{admixture formation} scenario, in which some of the relevant binaries are primordial\textit{primordial} and the rest are formed dynamically\textit{dynamically}, is preferred over a primordial-only formation scenario at 7.6σ7.6\sigma confidence level. Our detailed morphological analysis also disfavors models of the disrupted globular clusters scenario that predict a spherically symmetric distribution of MSPs in the Galactic bulge. For the first time, we report evidence of a high energy tail in the nuclear bulge spectrum that could be the result of IC emission from electrons and positrons injected by a population of MSPs and star formation activity from the same site.Comment: 21 pages, 13 figures, V2: Minor changes to match submitted version, V3: matches JCAP published versio

    Measurement of redshift dependent cross correlation of HSC clusters and Fermi γ\gamma rays

    Get PDF
    The cross-correlation study of the unresolved γ\gamma-ray background (UGRB) with galaxy clusters has a potential to reveal the nature of the UGRB. In this paper, we perform a cross-correlation analysis between γ\gamma-ray data by the Fermi Large Area Telescope (Fermi-LAT) and a galaxy cluster catalogue from the Subaru Hyper Suprime-Cam (HSC) survey. The Subaru HSC cluster catalogue provides a wide and homogeneous large-scale structure distribution out to the high redshift at z=1.1z=1.1, which has not been accessible in previous cross-correlation studies. We conduct the cross-correlation analysis not only for clusters in the all redshift range (0.1<z<1.10.1 < z < 1.1) of the survey, but also for subsamples of clusters divided into redshift bins, the low redshift bin (0.1<z<0.60.1 < z < 0.6) and the high redshift bin (0.6<z<1.10.6 < z < 1.1), to utilize the wide redshift coverage of the cluster catalogue. We find the evidence of the cross-correlation signals with the significance of 2.0-2.3σ\sigma for all redshift and low-redshift cluster samples. On the other hand, for high-redshift clusters, we find the signal with weaker significance level (1.6-1.9σ\sigma). We also compare the observed cross-correlation functions with predictions of a theoretical model in which the UGRB originates from γ\gamma-ray emitters such as blazars, star-forming galaxies and radio galaxies. We find that the detected signal is consistent with the model prediction.Comment: 11 pages, 24 figures, accepted by MNRA
    • …
    corecore